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Nulling in Linear Array Patterns With

Minimization of Weight Perturbations

1. INTRODUCTION

Adaptive antenna systems presently receive much interest and there has beer

considerable study of adaptive algorithms. Less attention has been devoted to the

end product of the algorithmq. which is an antenna pattern with nulls in the direc-

tions of the jammers. In this report we therefore study the general properties of

patterns with null constraints. The hope is that this may contribute to more insight

into the basic behavior and fundamental limitations of adaptive nulling systems and

possibly also suggest new adaptive schemes suitable for large array antennas.
The approach we take is based on a direct synthesis of the array pattern with

the desired nulls, in contrast to an iterative solution using an Pdaptive algorithm.

The problem is formulated as an approximation problem: a set of complex array

weights IW.) i• determined which, subject to the null constraints, best approxi-

mates a given set of weights I wonl . Two types of approximation criteria are

considered: (a) minimum relative weight perturbations; that is,

1 kwn - w on)/w on12= miz, and (b) minimum total weight perturbations; that is,

EwWn - won 2 = min. Criteria related to (b) have been applied before, 1.2 whereas

(Received for publication 18 February 1982)"

1. Mayhan. J. (1976) Nulling limitations for a multiple-beam antenna, IEEE Trans.
Antennas Propcg. AP'24:769-779.

2. Steyskal. H. (1982)Synthesls of antenna patterns with nulls. IEEE Trans.
An t ennas Propag. AP-30.
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the criterion (a) seems to be new. For both cases exact solutions are derived and

Interpreted In terms of cancellation beams superimposed on the initial, uncon-

strained pattern.
We then consider the same synthesis problem under the restriction that the

array excitation is perturbed in phase only. The motivation !or this is. of course.

that in a phased array the required electronic controls are &vailable at no extra

cost. This subject is of great practical interest, and ieveral publications on it

have appeared in the literature. 3 9 The asrociated approximation problem is non-

linear in general but can be linearized by assuming that the required phase perturba-

tions are small, an assumption which is reasonable in certain applicati'ns involving

null placement in low sidelobe regions. Based on this assumption we determine a

set of phase perturbations I On I for the same two criteria as above which now take

the forms (a) minimum phase perturbations, that is, Eqn 2 = min., and (b) miaimum

products of the phase perturbations with tho element amplitudes; that is,

d( Won On )2 n min. This time the solutions cen be interpreted as pairn of can-
on n Icellation beams superimposed on the initial pattezr.

Following the ui.ialysis of these null synthesis problems we present the results

of comr .iatiorna designed to display the basic features of the solutions obtained and

to explore the limitations of the small phase perturbation assumption used to linear-

ize the phase-only null synthesis problem.
We conclude the report by demonstrating an equivalence betu een the null

synthesis problem treated in terms of obtaining a best fit to a given set of element

weights, and treated in terms of obtaining a best approximation to tne original pattern.

At the same time we also extend the null synthesis problems studied in the first part

of the report by considering a more general minimization rriterion that includes the

criteria treated earlier as special cases.

2. ANALYSIS

In the following analysis we consider a linear array of equispaced isotropic

elements (see Figure 1). The spacing between the elements is d and the phase

reference certer !a taken to be the center of the array. Lettirg wn, n - 1,2..., No

be the complex weight of the nth array element, the array field pattern, p(u) is

given by

(Due to the large number of references cited above, they will not be listed here.
See References. page 67.)

10



Figure 1. Geometry of

Array

N-IMt 1- 0 5 2 1

N u
p(u) a wn n

where

n -(n- 1). n 12.... N

and

uri kd sinG

with

and 9 the angle measu;'ed from broadside to the array. Note that the dn are odd
symmetric with respect to the pha3e reference center; that is,

dn= - dN-n+ I n= 1.2, .... N.

The general problem we address here is the following. Suppose w-t are given
an Umplitude taper an. n a 1. 2 .... N. for the element excitations ,e.,r example,
for low sidelobes). and a direction u. for the peak of the array pattern (look direction).
Then the array coefficients are .. .

Won aa nu no nl12, ... , N.

The amplitude distribution is assumed to be symmetrical with respect to the array

center. We now wish to alter the element weights so ab to place nulls in the array

pattern at a set of M prescribed sidelobe locations uk, km 1, 2 .... M, What should

the coefficient perturbations be? We consider two principal cases of this problem:

(I) the perturbations are of both amplitude and phase; and (2) the perturbations are

of the phases only.

*In this report, we use the implcit time dependence eiJ&t.
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2.1 Anoltud and Mom Partwbetflm

We begin by considering the case in which both the amplitude and the panne of

the element weights can be perturbed froni their original valrio.e The perturbed

coefficients can be represented as

=a eJdn u + a Iejdnu (An+ ion).Cl)

The first term on the right hand side of Eq. (1) is the initial value. won, of the nth

element weight, and the second term is the perturbation of the weight

jdnu

Awn m an e n (A r + j ) n (2)

The array field pattern is then
N dus ejdn ,uJd

P~u- =r [ n s~11+a ~n s( 4  Jni]e~jnN

P o(u)+ - aneJd n (A + J n) e jJdn

no I

where po(U) is the original or unperturbed array pattern. We now wish to deter-
mine the An and the 0n to place nulls at the M locations uk,. km 1. 2 .... M, or

equivalently to find solutions to the equation system
N j d I u a j dkn uk1:a n(Ai n + J 0n)c ... ..., I 2 M(3

Note that in this equation system there are 2 N unknowns and 2 M equations

(considering the real and imaginary parts of Eq. (M) separately). Hence, if the
number. M. of prescribed null locations is less than N. the equatioii system as it

stands does not have a uniquely determined solution. Clearly a further requirement

(or requirements) must be imposed on the solution to determine it uniquely.
At this point, motivated by the desire to keep the weig.r', perturbations as small

as possible, two possibilities suggest themselves. The first is to find the solution

to Eq. (3) which minimizes the sum of the squares of the absolute values of the
weight pertu.'bations relative to the original weights.

N

Ia +J0I 2m 1: (A2+02.2
no I n n = l a

12
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The second possibility is to find the solution which minimizes the sum of the squares
of the absolute values of the total weight perturbations

N N
'r ~w12 'r a ( 2 +02

no I n n= n n

We now treat each of these two cases in turn. The treatment of both cases is based
oan the following result which we state as a theorem:

THEOREM A:

Let A be an m X n complex matrix of rank m. m < n (that is. A has m linearly
independent rows). Then the solution x of the equation system

Ax y

which mlirnizes the norm of x. xi (xtx) can be
expressed as a linear combination of the columns of At. (Here t represents the
Hermitian transpose operator.)

PROOF:

The proof is an immediate corollary of the fact that the minimum norm solution
to10is0

x = At (AAt)"l Y.

If we let b be the m X I vector (AAt)'z then

x Atb

so that x is a linear combination of the columns of At with coefficients from b.
Applying this theorem first to finding the solution of Eq. (3) which minimizes

N 2
S(An+ 0 ) we let

[A I & + J 01, A2 + j 02' A.. N + J 4ýIT141T(4

Y ='[Po (U 1). Po(U2) ..... Po(uM)] T (5)

and

10. Rano, C. , and Mitra. S. (197 1) Generalized Inverse of Matrices and Its
Applications, -John Wiley & Sons. New York, p 45.
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da ed(us u) a 2 (u - u) a jNdN(Us - u )SIa.e ... ae jdN(us

A I (u s u2) jd 2 (us "u 2 ) aN ( eAaIea 2 e ... (6)

SeIdl(Us - uM) jd 2 (us - uM) eiddN(Us - uMU

aI a2e ... aNe

so that the system of Eqs. (3) can be written as Ax v y. It follows from the theorem

that

h dnjd(u - u)
An + n= , b ma e n= 1.,l.... N (7)

m= n' I

where the vector of coefficients. b, is given by inverting the equation

(AAt)b y. (8)

The elements of the MX hl× matrix AAt are given by

N jdn(u - Uk) jdn(us - U
(AAtk = an e na n e

na I nN
- a2 e"idn(uk - urn)

N .1. /

SE a 2 coso dnulk - um)], k.mm a 1. 2. M

. making use oflhe--6dd symmetry of the dn and the assumed even symmetry of the
original distribution of the element weight amplitudes. The elements of AAt are
thus real. The components of the vector y. the negatives of the unperturbed pattern
values at the prescribed null locations, are likewise real since the unperturbed
pattern is real because of the symmetry of the dn and of the original amplitude
distribution. Hence the coefficients bm. m '1. 2... M. are real and it follows

fiom Eq. (7) that

14
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A n = a b bccs[dn(um - U)]

M

On =n bm sin[dn(um u Us)J•I a nl 1

"The A are thus even symmetric and the 0n odd symmetric with respect to n:a

that .s,

A = AN-n+ I

n= 1.2....N.

The representation of the relative weight perturbation in the form of Eq. (7)

can be given an appealing physical interpretation. Substituting Eq. (7) into Eq. (2)

we obtain

2• NI dn u m
Aw a Ej b en=a m~

and thus

p(u) = p(u) + Ap(u)

where

l N -j d( .(u m)
Ap(u)= . b e (9) L a

m= 1 n=l n

Accordingly the perturbed pattern equals the original pattern plus the sum of MI

cancellation beams each corresponding to a taper of the awplittie of the element
excitations proportional to the square of the original amplitude taper and with a
pattern peak in the dirmction of one of the desired null locations. In the sequel we

will sometimes refer to the cancellation beams corresponding to the amplitude taper
a as "tapered cancellation L.ams."

2N 2 2 4 N 222
If inmtead of minimizing nr (An2+ @n)we minimize E1 IAwI- n at+* 2 )

(see p. 13). then similarly to Eq. (4' and Eq. (6) we let

15



x- [a 1  1 + j 0 1). 2 (A12 + J 2) ..... aN(AN+JIO"T

and

ejdI(us" - u e1) Je 2 u: 2 U ) , eJdN(un " ul)"

ejdI(us - u 2 ) jd 2 (us - u 2 ) JdN(us - u 2 )

jd 1 (u5 a UM) jd 2 (U a - UM) jd N(u. 13)A
L e e ... e

thereby obtaining

a (An+ j)= bme n a, n 12,..., N.

The vector of coefficients, b, is obtained as before by Inverting Eq. (8) where the

elements of the matrix AAt are now given by
N

*1.AtIkm co [d, n "u m) .m t2 .

The coefficients bm, m = 1.2, ... , M are again real and we obtain

M
I b cos [dn(um u)]

n a In fn 51n m=1
M

On = bmbsin (dnlum - us)., :•-
O n a.M=l ..... n a

The weight perturbation takes the form

jdn u-

Awn b 2 ..... N (10)r~n = 1 ' ':

and the pattern perturbation is

16
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M N

M N l-jd n(u-uM)ApMu) .-E ba. 1E e (Ila)

m= 1 nwi

M' 'sinfN(u - ur) / 21
SId bm sinl u - umriF "li

Ihe perturbed pattern is thus equal to the sum of the original pattern and M cancella-

tion beams each corresponding to a uniform amplitude distribution of the element

excitations and with a peak in the direction of one of the null locations. We will

sometimes refer to such cancellation beams as "uniform cancellation beam,' -'

The representation of the total pattern perturbation as the sum of M cancella-

tion beams corresponding to uniform element amplitudes is alro the form of the

pattern perturbations for a half-wavelength-spacing linear arr ty-obtained by

Steyskal 2 who finds the weights that will give the pattern with nulls at a set of pre -

scribed locations which differs as little as possible in the mean square sense from

the original pattern. In Appendix A we give an alternate dezivation of this result

as a special case of the solution to the minimum pattern perturbation problem for a

linear array with arbitrary uniform element spacing. Thus the solution to ,he prob-

lem of placing nulls at a prescribed set of locations which minimizes the uvm of

the squares of the absolute values of the total weight perturbations
N 12 . N 2 2 2
= • Awl j a a (A * On) is also the solution that minimizes the meann- n~ln n

square difference between the original field pattern and the perturbed field pattern.

In low sidelobe applications we can anticipate that the minimum (in either of the

two cases we have treated above) weight perturbations required to place nulls at a

se. of sidelobe locations will be small. Starting with the expression for the nth

perturbed weight

jd u

w- ane n l(+nA +jn])

-a eidn au(( +A 2 + 2 e/2

we can then expand

[ ,l .4n )2 + ] l/2 2 ( ( ) [ 1+ 1 ( n \) .

tan1 (l On-n- 1n-n+na

17
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and retain only the linear terms thus obtaining

wna anU +A) ejdnua e JOn

Hence for small An a id n A is the relative change in the amplitude and n is the

phase perturbation of the n weight.

2.2 phwm-wy Nttiu"MioM

We now turn our attention to the case in which phase perturbations only are

allowed in the element weights. The amplitudes of the element excitations are fixed

at their original values. The phase-only analysis parallels that performed above in
which both amplitude and phase were allowed to vary from their initial values.

The perturbed coefficients are represented by

w Jdnus e n (l1a)Wn • n•

a ane jdnus + an e jdnus (ejon - 1). n = ,.... N. (12b)

We assume that the phase perturbations are small (for example, for applications to

null synthesis in low sidelobe array patterns), Then

J ,ne 1 SJOa (13)

and

w n ane a +janfne (14)

The array pattern is giveri by

N jd u -jd u
p(u)M p(U a n e dn s endn

n- I

and the equation system for the nulls is

N

S a n sin [dn(Uk - us)] - - po(uk) (15a)
n- I

k= 1.,2, .. ,M.
NNa # c°o)dn(u " U = 0 (15b)

an n coln k a 5 J
nl 8
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This equation system has 2 M equations for N unknowns and hence, as In the case of

perttirbations of both amplitude and phase, a unique solution to tie system of equa-

tions can be obtained only if a further requirement is imposed on the solution. (It

is assumed of cource that the number of uimnown phase perturbations is greater

than twice the number of null locations.) As above we treat two cases. the first

here corresponding to the requirement that the solution minimize the sum of the
N 2

squares of the phase perturbations. @n (or equivalently, minimize the sum of

the absolute values of the weight perturbations relative to the original weights), and

the second to the requirement that the solution minimize the sum of the squares
N 2

of the absolute values of the total weight perturbations, E (an nl)

Consider first minimizing the sum of the squares of the phase perturbations.

We write the system of Eqs. (15) in the form

AluZ (16)

where

T
(#1- .02' ON (17)

"a1 min(dI(u 1 - u )a a 2 sin(d2 (uI - us), ... as sinldN(u1 - ]
I5

A a aln (d'I (u 2 " u )a a2 sin[d 2 (u2 - us)) ... a&N sin dN(U 2 - us)]

a1 sin (d1(u, - uJ a2 sin(d2 (UM - ) N min (dN(um - us))

(18)

and Z to given by Eq. (5). Using Theorem A we then obtain the representation of the

phase perturbation as

M
n an b sind(u. " u)] (19

The vector of coefficients, b. is obtained by inverting the equation

(AAT )b z (20)

19
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with the eldeinents of the matrix AAT given by

1 N
[AAT . r a' sin~d. (u - us)) sinidn(um -u)](1

It follows from Eq. (19). because of the even symmetry of the amplitudes an
assumed throughout and the odd symmetry of the da. that the n are odd symmetric

with respect to the phase reference center; that is.

n -N-n+ 1' na 1.2 .... N.

This means that Eq. (15b) in automatically satisfied by the solution obtained to

Eq. (15a).

It is important to note that the values of calculated from Eq. (19) must be
substituted in Eq. (12a) or Eq. (12b) to obtain the perturbed weights. Since the

values for the On were obtained using the approximation (14). for the weights,
t).is means that the resulting pattern ntills cannot be expected to be theoretically
perfect as they would be if the calculated values of 0n were cubstituted in approxi-
mation (14). "

The approximated form (14) is useful, however, for obtaining a physical inter-

pretatien of the phase-only perturbation solution. Substituting Eq. (19) in (14) we
obtain the approximate weight perturbation

Awn a wn- neJdu

jd u,
- n On e ,!

a2 mF •d n u si lu )]',

mm 1n bn• i [dn~~i " u5)

" - b. du _ ezdnI 2 U (U um)]
mul

The value of the perturbed pattern at a prescribed null location uk is in fact given by

jd N 2 d
e [u .-°° On doj u

a. [ejOnll+J J) en d , a 1  ,
na n 1 I

with the value of the power pattern at the location given approximately by
N N 2 2 NJldn dM)uk•

amanmn

Mi I nu I ml n Om On
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and the corresponding pattern perturbationAP M E] b"E n e n m e (uM (2
m z I eJdnn= I(22)

The perturbed pattern is thus approximately equal to the sum of the original pattern
and the sum of the differences of M pairs of cancellation beams. Each of these pairs
of beams corresponds to an element amplitude taper proportional to the square of
the original amplitude taper, with one member of the pair having a peak in the
direction of a null location and the other member of the beam pair having a peak in
the symmetric direction on the other side of the original pattern look dii-ection, u 5 .
[Note that 2 us - u um - 2 (um - Us). I Thus the placing of nulls in the prescribed

locations is accompanied by a doubling of the pattern at symmetric locations on the

other side of the look direction.
The requirement of minimizing the sum of the Pquares of the absolute values of

N 2the total weight perturbations l(an On) , (see p. 19) leads, similarly to Eq. (17)
n'

and Eq. (18). first to expressing the system of Fls. (ISa) In the form of Eq. (16? '
where now

([a, 0. a 2 02 .... aN

and

"sin[dl(uI -Us)l sln[d2 (u -u 5 )I ... sln~dNIl, -ul]j

'I Y

sintd1 (u 2  - Us)j aln[d 2 (u2  - u*)j ... , lntdNlu2  -usl' '

* .

Hence. similarly to Eq. (19i.

M
an 1; bm sin[d (un (um s)) (23)

with the vector of coefficients, b, obtained by Inverting Eq. (20) with

/



N
[AAT]im sin• lnd.n(Uk-us)) sinidn u(m - us)

The weight perturbation is then approximated byM F.jdu jd(2,u-.u,
Aw hl b e dn um Quns umj

n mL M

and the corresponding pattern perturbation by

AP M b -' d n(u -u) m -jd n(u- 12% -u m (4iaplu) = I m e (24b)

Mb :- &u m)\in - u(

m sin[(u - (Z us )/2)I

Minimizing the squares of the total weight perturbations thus leads to a result
similar to that for minimizing the squares of the phase perturbations (relative
weight perturbations). The perturbing or sidelobe cancelling pattern is again
approximated by the sum of the differences of M pairs of beams, each of which
corresponds here to a unifo-m amplitude distribution of the element weights. Equa-
tion (23) shows that the phase perturbations are inversely proportional to Ute ampli-
tudes of the weights, whereas for the minimum-phase-perturbation solution.
Eq. (19), the phase perturbations are directly proportional to the weight amplitudes.
It is also simple to show (see Appendix A) that for half-wavelength element spacing.
the pattern given by the approximation (24) which corresponds to minimizing
the approximate total weight perturbations, is also the pattern that differs least from
the original pattern in a mean square sense, while having nulls at the desired loca-
tion2 obtained with small phase-only perturbations.

It in instructive to compare the approximate (for small phase-only perturbations)
representations of the pattern perturbations obtained here. (22) and (24). with
the representations in Eqs. (9) and (11). obtained earlier when both the amplitude
and phase of the weights are allowed to vary. Minimizing the sum of the squares of
the absolute values of the relative (to the or 4ginal amplitude weight) perturbations

(ej #n - I - j # n for phase-anly perturbations and An + J on for combined amplitude
snd phase perturbations) leads to a representation of the cancellation pattern in

terms of beams corresponding to an element amplitude taper proportional to the
square of the original amplitudes; whereas minimizing the sum of the squares of

j u a J n j uathe absolute values of the total weight perturbations (an e (e 1) a j aa e
j u

an e (4 + j n respectively) leads to a rtpresentation of the cancellationpattern

22



in terms of beams corresponding to a uniform amplitude distribution. Phase-only
perturbations require two beams fcr each desired null, one pointing in the dirtction

of the null and the other, of opposite sign. in the symmetric direction on the opposlte
side of the original main beam axis, with the result that the placement of the nulls in

achieved at the expense of doubling the sidelobe levels at the symmetric locations.
When both amplitude and phase are allowed to vary, there is only one beam for each

null pointing in the direction of the null location. For half-wavelength element

sejacing, the pattern* corresponding to minimizing the sum of the squares of the

total weight perturbations are also the patterns that differ least in the mein square
sense from the original patterns. Because of the small phase approximation (13) ,

employed in the phase-only analysis, the reas-lting pattern nulls are not perfect,
whereas the patterns achieved with both amplitude and phase control have theoretic-

ally perfect nulls at the desired locations.

Before discussing numerical results, it is worthwhile to introduce s useful

normalization of the beam coefficients. Consider first Eqs. (9) and (11) obtained

for the perturbing or sidelobe cancelling pattern Ap(u) when both the amplitude and
the phase of the weights are allowed to vary from their original values. For simpli-

city suppose there in only one null location (that is, Mw 1). Then Eq. (9) gives for

minimum squared relative weight perturbations,

N

-po U)O ApP(u) = b E an.

so that

1 N 2

na I

whereas Eq. (11) gives, for minimum squared total weight perturbations,

-po (wp, - -(u I Nb

or

The beam coefficients in the two cases can have widely differing values epending

on the amplitude taper, an. and the number of elements in the array. N If aLmul-
taneous nulls at multiple locations are desired, then the deviations of th values of

23
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the beam coefficient3 from tneir values obtained for the same null locutions taken
one at a time give a measure of the extent of coupling or interference between the
component beams of the perturbing pattern. For ease In dcscribing the extent of
coupling between component beams as well as for c-omparing differences in coupling
corresponding to different types of beams, it is desirable to normalize the beam
coefficients so that their value equals the negative of the unperturbed pattern value
at the null location when there is only one null location. This As equivalent to re-

quiring that each component beam of the cancelling pattern have a magnitude of
un3;.y in the peak of direction of the beam. It follow, 'hat the beam coefficients for

"tapered cancellation beams" shc ,Ad be multiplied by I an, and the beam coeffi-

cients for "uniform cancellation beams" should be multiplied hy N. The two cases
can be given a uniform representation as follows. Let

an. tapered cancellation beams
C n (25)

• 1. uniform cancellation beams

and
2c

tn &------ (26)E c 2
no"I

Then the equation system for the normalized beam coeffliolents. bm. is [see Eq. (8)]

(AAt) b' Y

where

N
[AAr] c tcOS(d(uk -m). k.m-1.2. M.km= no I

The nth weight per'urbation is given by
N jd n um

Aw Zt E b' en=tAn nn- m

and the cancellation pattern by

24



fN

M N -jd (u-u
Ap~)= b ~n m

i mffl m n~ n

The real and imaginary parts of the relative weight perturbations are given re-

spectively by

-t M
An a L E bncoo[Id (u - un a nm=1I n m a

tn M

On -. m ' 1 sin[d (u - u1.

The normalization for phase-only control is entirely similar. With tn defined
by Eq. (26). the equation system for the normalized beam coefficients is (cf. Eq. (20)1

T(AA ) b =

where
N

[AATl] F,. ,tnsin ([d.(u.-us)Jsin(dn (U -us).
km n= I

The phase perturbations are

M
tnmtn b= 2 b Sin [dnl(um -Usa)]..
an m.f I M"\

The perturbation of the nth weight can be represented approximately by

St b e redn jd (2 us -um)l

and the cancellation pattern approximated byM N% N njdn(uu•- ) -Jdn(u 12u -u )
Ap(u) a E b tn n me -en 2 um

sh-1nl mfl

& NUMERICAL RESULTS AND DISCUSSIONS

In this section we present and discuss the results of computations performed to
display the basic features of the solutions obtained In the previous section. AUl
computations were doni for an array with 41 isotropic elements with half wavelength
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spacing. Unless otherwise stated, the original or unperturbed pattern corresponds

to a 40 dB Chebyshev taper of the element excitations.11

We begin by discussing the simplest case-that of imposing a single null in the

pattern. A location of 0 = 15. 23* was chosen corresponding to the approximate

location of the reak of the fifth sidelobe of the unperturbed pattern. Figures 2a-2c

and 3a-3c show the patterns corresponding to perturbations of both the amplitudes

and phases of the element weights minimizing the relative weight perturbations
N 2N

=Ai (WnI l/an)
2 [Eq. (9)1 and the absolute weight perturbations, n=1 IAwnI2.

[Eq. (11)]. respectively. For each of these two cases .. e show three graphs, the

first with the perturbed pattern for 8 from -90" to 900. the second with the can-

cellation pattern from -900 to 900, and the third with both the original and the per-

turbed patterns in the range from 0* to 25.
We see that the cancellation beam in Figure 2b for minimized relative weight

perturbations, which corresponds to a taper of the element excitations equal to

the square of the original amplitude taper, has a much broader mainlobe and much

lower sidelobes than the cancellazion beam in Figure 3b which corresponds to a

uniform distribution of the element amplitudes. This means that the original pitt, ".n

is distorted more strongly in the vicinity of the null for minimized relative weight

perturbations than it is for minimized total weight perturbations, and conversely

that the original pattern is distorted less strongly far away from the null for the

minimized relative weight pertur-bations than it is for minimized total weight per-

turbations. (In a mean square sense, as is demonstrated in Appendix A. the dis

tortion of the original pattern is minimized by the minimized total weight perturba-

tion scheme.) Note that the broad mainlobe of the cancellation pattern in Figure 2b.

being out of phase with the fifth sidelobe of the original pattern, is in phase with the

fourth and sixth sidelobes of the original pattern with the result that these sidelobe

levels are raised (see Figures 2a. 2c). Indeed the effect of the mainlobe of this

cancellation pattern extends even to the third and seventh sidelobes of the original

pattern which, being out of phase with the mainlobe of the cancellation pattern, are

lowered slightly from their original values. By the time the second or eighth side-

lobes are reached, however, the effect of the cancellation pattern of Figure 2b is no

longer felt and the perturbed and original patterns are virtually indistinguishable.

In contrast, the cancellation beam of Figure 3b. which tapers much more slowly than
does the cancellation beam of Figure 2b. can be seen by referring to Figure 3c to

have a small effect as far as the first sidelobe of the original pattern.

11. Drane, C., Jr. (1964) Dolph-Chebyshev excitation coefficient approimation
IEEE Trans. Antennas Propag.o AP-12:781-782.

26

I / '
2' ''-



Figure 2a. Pertu bed Pattern With
. One Null Imposed at 15. 230 With

Combined Ampl!tude and Phase
Perturbations, Minimizing Relative• • "•Weight Perturbations. 0 -900 to + 90"

THETA (DEGREES)

Figure 2b. Cancellation Patterns to
Impose One Null at 15.23" With Combined
Amplitude. and Phase Perturbations,
Minimizing Relative Weight Perturbations.
9 =-90" to +90 -

-I4

TIhETA (DEGREES)

Figure 2c. Original Pattern and
Perturbed Pattern With One NullImposed at 15. 23 With Combined

Amplitude and Phase Perturbations,
0 Minimizing Relative Weight Pertuba-

tions. 9 =0"to25"

THETA (DEGREES)
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Figure 3a. Perturbed Pattern With
One Null Imposed at 15.230 With
Combined Amplitude and Phase
Perturbations. Minimizing Total WeightPerturbations. 0 = 90" to +90"

THETA (DEGREES)

Figure 3b. Cancellation Pattern to Impose "
One Null at 15. 23" With Combined
Amplitude and Phase Perturbations.
Minimizing Total Weight Perturbations. . -40
8 = -90" to +90"

-tO~

THETA (DEGREES)

Figure 3c. Original Pattern and

'~ ,''~ ,'Perturbed Pattern With One Null
' Imposed at 15. 23 With Combined

SAmplitude and Phase Perturbations.
" ' Minimizing Total Weight Perturba-

tions. 6 =00to 250

THETA (DEGREES)
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Figures 4a-4c and 5a-5c show patterns for a singie imposed null at 15. 23'

corresponding to perturbations of only the phases of the element weghts. Fig-

ures 4a-4c show the results when the sum of the squares of the phase perturbations,
N 2

E #n2 is minimized, [Eq. (22)]. and Figures 5a-5c -how the results when
n= l

N
n=l (a nn ) is minimized [Eq. (24)]. The principal change in these patterns from

those in Figures 2a-2c and 3a-3c corresponding to perturbations of both the ampli-

tudes and the phases of the weights is that now the cancellation pattern is the super-

position of two beams, one with a peak in the direction of the n'l, and th! other with

a peak of opposite phase in the symmetric direction on the other side of broadside.

Hence any change in the pattern on the null siae of broadside (0 > 0) is accompanied

by an equal and opposite change on the other side of broadside (9 < 0). Note es-

pecially that the sidelobe peak at -15. 23* in Figures 4a and 5a i.s raised 6 dB. This

is necause the cancellation pattern to produce a null at +15. 23* must have a magni-

tude equal to, and a phase opposite, that of the original patte-'n at 15. 23° and hence

adds in phase to the original pattern (which is symmetric around 9 = 0) at -15. 23°

doubling its magnitude there.

The cancellation pattern of Figure 4b is the superposition of two beams of the

form of Figure 2b (that is, beams corresponding to an element amplitude taper

equal to the square of the original taper), while the cancellation pattern of Figure 5b

is the superposition of two beams of the form of Figure 3b (that is, beams corres-

ponding to a uniform element amplitude distribution). On the null side of broadside,

9 > 0, the phase-only cancellation patterns are dominated by exactly the same beams

that are used for cancellation in the corresponding patterns when both amplitudes

and phases of the element excitations vary. Hence the basic features of the phase-

only patterns for positive 0 are the same as those noted abuve for combined ampli-

tude and phase perturbations, Figures 4a-4c being similar to Figures 2a-2c and

Figures 5a-5c being similar to Figures 3a-3c.

In Table 1 we have tabulated the values of the beam coefficients, and the values

of the original and perturbed patterns at the null positions for this and cucceeding

cases. For one null at 15. 230 and perturbations of both amplitudes and phase, it

will be noted that the value of the beam coefficient equals the negative of the original

pattern at the null position. This is a consequence of the normalization of the can-

celling beams discussed at the end of the previous section. For rhase-only perturba-

tions, the beam coefficient corresporiding to the minimization of the sum of the

squares of the phase perturbations aga'n equals the negative of the original pattern.
N 2

but the beam coefficient correspondL•g to the minimization of E (anon)i(a )is slightly

larger. This deviation of the latter beam coefficient is a consequence of the fact

29
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that for phase-only perturbations and one imposed null. che beam directed at the

null position must not only cancel the original pattera there but must also cancel

the sidelobe oZ the beam directed at the symmetrical position on the other side

of broadside. Since the sidelobes of the beams used for cancellation whenN 2
n is minimized taper off considerably more qi'ickly than the sidelobes of the beams

n= I N

used for cancellation when n (aonn is minimized (compare Figures 2b with
n=l1

Figure 3b). the effect of the sidelobe of the beam directed at the symmetrical p~si-

tion of the null is more strongly felt in the latter case than it is in the former.

Note also that the depth of the nulls achieved when both the amplitudes end

phases of the element coefficients are allowed to vary are considerably deeper than

the null depths when only the phases are allowed to vary. This is a consequence of

tbe small angle approximation (13) discussed in the previous section. used to linear-

ize the phase-only nulling problem. The phase perturbations obtained by solving the

linearized nulling problem do not give exact nulls when suLtituted back into the

element weights. However, the smaller the phase perturbations, the better the

approximation is. This explains why the null depth achieved when the sum of the

squares of the phase perturbations is minimized is deeper than the null obtained

when the weighted sum N (an) 2 is minimized-the phase perturbations in the
n=I

former case are in a least squares sense smaller than those in the latter case.

Following this discussion of imposing a single null, we now look at the case of

two nulls imposed symmetrically at the -3 dB points of a sidelobe. Locations of

0 = 14. 540 and 15. 940 were chosen corresponding to the -3 dB points of the fifth

sidelobe of the unperturbed pattern. Figures 6a-6c and 7a-7c show the pattern

corresponds to the perturbations of both the amplitudes and phases of the element

excitations that minimize the sum of the squares of the relative weight perturbations

and of the total weight perturbations respectively. Since the points at which the nulls

are imposed belong to the same sidelobe and are approximately symmetrical with

respect to the sidelobe maximum, the beam coefficients are approximately equal

(see Table 1). The beams appear to add constructively over most of their range to

form what has very much the appearance of a single beam (compare Figures 6b and

7b to Figures 2b and 3b respectively). The qualitative features of the patterns

shown in Figures 6a-6c and 7a-7c are entirely similar to those of Figures 2a-2c

and 3a-3c respectively.
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Figure 4a. Perturbed Pattern With
One Null Im'posed at 15. 23 0With

a Phase-Only Perturbations Minimizing
r a -90* to +900

-IM I 1141~j-.+ ~-.~.4-.---~--)-

THETA (DECREES)

Figure 4b. Cancellation Pattern to
Impose One Null at 15. 230 With Phase-Only W
Perturbations. Minimizing Zo

*--900 to +900

THETA (DECREES)

o '' 'Figure 4c. Original Pattern and
t, ~ Perturbed Pattern With One Null

I Imposed at 15. 230 With Phase-Only
Perturbations. Minimizing n*2

-I- 0* I6 0to250

THETA (DEGREES)
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a4 Figure 5a. Perturbed Pattern With
One Null Imposed at 15. 23* With
Phase-Only Perturbations Minimizing

Z(1")2.a -0to+0
nfn

THEtA fOECREES)

Figure 5b. Cancellation Pattern to
Impose One Null at 15. 230 With Phase-Only e

Perturbations, Minimizing ZVa n 2
9 -900 to +-900

I'META (DEGREES)

Figure 5c. Original Pattern and
Perturbed Pattern With One Null
Imposed at 15. .13 0With Phase-Only

a-40 Perturbations. Minimizing Z~a 2
9 -0*to 25

THETA (DEGREES)
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U ~p Figure 6a. Perturbed Pattern With
Two Nulls Imposed at 14.540 and
15. 94 0With Combined Amplitude andI G =Phase Perturbations. MinimizingjRelative Weight Perturbations.

THETA (DEGREES)

-40

Figure 6b. Cancellation Pattern to
Impose Two D ills at 14.541 and 15. 94 U
With Combined Amplitude and Phase~
Perturbations. Minimizing Relative Weight
Perturbations. 9 -900 to +900B

THETA (DECRE tS)

* Figure Sc. Original Pattern and
a Perturbed Pattern With Two Nulls
8 Imposed at 14.540 and 15.940 With

of Combined Amplitude and Phase
a Perturbations, Minimizing Relative

Weight Perturbations. 9 00 to 250

-Los II I~-4--

THETA (DECREES)
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Figure 7a. Porturbed Pattern With

11t~I Two Nulls Imposed at 14. 54 0 and
15. 94 With Combined Amplitude and
Phase Perturbations, Minimizing
Total Weight Perturbations.
0 = -900 to + 90 "

-NN

T H E [T A ( D E [C R E E S ') 

•

Figure 7b. Cancellation Pattern to
Impose Two Nulls at 14. 54 and 15. 94 -
With Combined Amplitude and Phase -

Pertu.-bations. Minimizing Total Weight i
Perturbations. 9 - -90 " to +90 "

THETA (DECOREES)

Fieure 7c. Original Pattern and
Perturbed Pattern With Two Nulls
imposed at 14. 54 0and 15.94 * With
Combined Amplitude and Phase
Perturbations, Minimizing Total
Weight Perturbations. 9 0* to 25 "

THETA (DECREES)
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Figures 8a-8c and 9a-9c show the patterns obtained for the cases of the same
two null locations at the -3 dB points of the fifth sidelobe when only peeturbatione

of the element phases are allowed. Figures 8a-8c correspond to the mln'.mizatlon

of the sum of the squares of the phase perturbations, and Figures 9a-9c to the
N 2

minimization of E (aon) . Referring to the cancellation patterns shown in
n-

Figures 8b and 9b and comparing these with the cancellation patterns in Figures 4b
and 5b respectively, we see that the two pairs of beams composing the phase-only

cancellation patterns appear to add constructively to form one resultant beam pair.
The qualitative features of the patterns shown in Figures 8a-8c and 9a-9c are thus
the same as those noted above in the case of only one constrained null for Figures
4&-4c and 5a-5c respectively.

Referring to Table I we note that, unlike the case of one null, the beam coeffi-

cients for all four minimization types are considerably smaller than the corres-
ponming values of the magnitude of the original pattern at the null locations. This

of course is the result of the fact that the cancellation of the original pattern at thue
null locations is effected by the peak of the cancelling beam directed at one null

position along wth the mainlobe of the cancelling beam directed at the other null

position so that the two beams help one another. This also explains why, the beam
N 2

coefficients obtained when E (I AwnI /a ) Is minipized are smaller than those
N 1 2 i

obtained whes E e mawgn minimized. The mainlobe of the cancellation beanTs
no I

in the former case falls off considerably more slowly than does the mainlobep in the

latter case (compare Figure 2b with Figure 3b) and so the peak of the beam directed

at one null position can get more assistance in cancelling the original pattern from
the aainlobe of the beam directed at the other null position. Some of the same

features noted above for the case of one null are seen here as well. Combined ampli-
tude and phase perturbations give deeper nulls than do phase perturbations alone,

N 2
and minimization of E w gives deeper nulls than does the minimization of Ve

noi n kN 2
S(a 0) *)

no• I

We next examine the case of two nulls imposed symm * etrically on either side of
a null of the original pattern. Locations of 9 - 15. 950 and 17. 360 were chosen
symmetrically placed on either side of the null between the fifth and sixth sidelobes
of the original pattern and spaced apart the same distance (measured by min 9) as
the two nulls in the preceding case. Figures lOa-nlc and hla-ilc show the patterns

corresponding to the perturbations of both the amplitudes and phases of +he element
excitations that minimize respectively the sum of the squares of the relative weight
and the total weight perturbations. Since the points at which the nulls are imposed
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belong to adjacent and almost equal sidelobes, and are approximately symmetrical
with respect to the null between the sidelobes, the beam coefficients are approxi-
mately equal in magnitude but opposite in sign (see Table 1). Unlike the previous

case where the mainlobes of the two component beams of the canclllation pattern
added in phase to form a single mainlobe, here the cancellation pattern in the vicinity
of the null positions is split into two lobes of opposite sign. The fact that the beam
coefficients are of opposite sign means that each of the beams must c;o & consider-
able amount of work. as it were, to caicel the effect of the other beam. instead of

being helped by the other beam as in the previous case. As a result, unlike the pre-
vious case. the beam coefficients are considerably larger in magnitude than the

values of the original pattern at the null locations (see Table 1). This is especially
the case for the beam coefficients corresponding to minimization of the relative

weight perturbations which are almost nine times the magnitude of the original
pattern values and three times as large as the beam coefficients corresponding to
minimization of the total weight perturbations. The reason why the minimum rela-

tive perturbation beam coefficients are so much larger than the minimum total
weight perturbation beam coefficients is that the taper of the mainlobe of the can-

celling beams is much more gradual in the former case than in the ltter. Hence
each of the minimum relative weight perturbation beams must do correspondingly

more work to cancel the mainlobe component of the other beam than is the case for

the minimum total weight perturbation beams.
Note that even though the original pattern at the null locations it approximatelyN2

-43 dB. the cancellation pattern corresponding to minimization of Z (iAwi /an) 2

no I "
rises to approximately -35 dB an either side of the pair of null locations, and the
perturbed pattern rises to -32 dB. The location of the peaks of the cancellation
pattern away from the pair of null locations (and the positions of the peaks of the
component beams) may be explained as follows. StartL-g at. say, the left null posi-
tion 0 a 15. 95 and moving to the left. the magnitude of both component beams de-
creases, but the magnitude nf the beam pointed at 9 a 15. 95 decreases much less

rapidly at first than does the magnitude of the beam pointed at 9 - 17. 36". Hence, I
the two beams being of opposite sign. the net effect is an increase in the cancellation

pattern. A similar but less marked behavior is also seen in the case of minimiza-
tion of the total weight perturbations (compare Figures Ila and lIc with Figures
I0. and 10c respectively). The perturbation of the original pattern In the vicinity
of the null positions in considerably more pronounced for minimization of the rela-
tive weight perturbations than it is for minimization of the total weight perturbations
because the component beams of the cancellation pattern are much broader In the

former case than in the latter (compare Figure 2b with Figure 3b). I ,.

37 \

7t I



Figure 8a. Perturbed Pattern With
9 Two Nulls Imposed at 14. 54 and

15. 04* With Phase-Only Perturbations,

Minimizing 2;0 .0 0to.0

-' --o THETA (DEGREES)

-404 
1

Figure Sb. Cancellation Pattern to-
Impose Two Nulls at 14. 5 4 and 15. 94'
With Phase-Only Perturbations., Minimizing A

2.= -90' to +90'

TEA(DEGREES

Figure Sc. Original Pattern and
Perturbed Pattern With Two Nulls

IImposed at 14. 54'* and 15. 94'0 With
'I PJý.xe-Only Perturbations. Minimizing

9a0' to 25'

THETA (DEGREES)
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e Figure 9a. Perturbed Pattern With

II Two Nulls Imposed at 14.540 andI15.940 With Phzae-OnlyPerturba-

S"• tions0 Minimizing Va
9 =-90" to +90 '...

-g I tIt• ~ I

THETA (DEGREES)

.20.

Figure 9b. Cancellation Pattern to -

Impose Two Nulls at 14.54 and 15.94" e
With Phase-Only Perturbations.

Minimizing V(a •n)20 8= e -90 to +90'
n n

.3 /

THETA (DEGREES)

Ii

/ ,
Figure 9c. Original Pattern and

.... Perturbed Pattern With Two Nulls
Imposed at 14. 54 0 and 15. 94 0Withe Phase-Only Perturbations, Minimizing

2V~an ) 0 00 0to025"
"" nf n

THETA (DEGREES)
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9 Figure 10a. Perturbed Pattern With
§ Two Nulls Iraposed at 15. 950 and

17.36 * With Combined Amplitude and
- Phase Perturbations, MinimizingRelative Weight Po-rturbations.

-90" to +90.

THETA (DEGREES)

-410 -

Figure 10b. Cancellation Pattern to e
Impose Two Nulls at 15. 95* and 17. 36'
With Combined Amplitude and Phase 0
Perturbations. Minimizing Relative CL

Weight Perturbations. 0 = -90" to +90,

THETA (DEGREES)

o I I N•

Figure 10c. Original Pattern and

e Imposed at 15.950 and 17.360 With
Combined Amplitude and Phase
Perturbations. Minimizing Relative

"" Weight Perturbations. 0 = 0* to 250

I
I I 2i

THETA (DECREES)
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Figure Ila. Perturbed Pattern With
Two Nulls Imposed at 15. 950 andS~~17. 36 0 With Combined Amplitude and ,

Phase Perturbations. Minimizing
Total Weight Perturbations.

8 -900 to +90"

THETA (DEGREES)

"-40

Figure lib. Cancellation Pattern to -

Impose Trwo Nulls at 15. 95 and 17. 36
"-ombined Amplitude and Phase . -

.rbations, Minimizing Total Weight
r arbations. 0 = -90° to +90*

000

EETA (DEEREES)E

-- - Figure I Ic. Original Pattern and
Perturbed Pattern With Two Nulls
Imposed at 15.95 and 17.36 With

Sto Combined Amplitude and Phase

4° /Perturbations. Minimizing Total

THETA (DEGREES) W P b st
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An additional consequence of the fact that the beam coefficients are much larger

in magnitude than in the previous case of nulls on either side of a sidelobe maxi-

mum is that the cancellation patterns display considerably higher sidelobes than in

the previous erse (compare Figures 10b and lib with Figures 6b and 7b respectively).

The more gradual decrease of the sidelobes of the cancellation pattern is especially

noticeable for the minimization of the total weight perturbations (compare Figure lib

w,'• Vigure 7)) an that the effect on the perturbed pattern is seen considerably

further away from the null positions in this case than it is in the previous case oa

two nulls imposed symmetrically with respect to a sidelobe maxincum (compare

Figure llc with Figure 7c).

Figures 12a-12c and 13a-13c show patterns obtained for the same two null loca-

tions. imposed symmetrically with respect to a null of the original pattern, when

only the phasea of the element weights are allowed to be perturbed. Figures 12a-12c

correspond to minimizing the sum of the squares of the phase perturbations, and
N 2

Figures 13a-13c to the minimization of E (a 0 ) . The qualitative features of
n=l 

.n..

these patterns for 9 > 0 are very similar to those discussed above for combined

amplitude and phase perturbations. Figures 12a-12c corresponding to Figures

lOa-10c, and Figures 13a-13c to Figures lla-llc. For 0 < 0. of course, theAI

phase-only perturbation patterns are dominated by the pair of beams which are

directed toward the symmetric positions of the null locations, and which have signs

opposite to the corresponding cancellation beams directed at the null locations

themselves.

Finally we examine the case of two nulls imposed asymmetrically within a side-

lobe. Locations of 0 = 15. 23" and 15. 94" were chosen corresponding respectively

to the peak and right 3 dB point of the fifth sidelobe of the unperturbed pattern.

Figures 14a-14c and 15a-15c show the patterns for combined amplitude and phase /
perturbations that minmize respectively the relative and total weight perturbatiuns.
In contrast to the case of two nulls imposed symmetrically with respect to a sidelobe

maximum, here the mainlobe of the cancellation pattern for minimized relative

weight perturbations is seen to be split into two lobes (compare Figure 14b with

Figure 6b). Referring to Table 1 we vee that the coefficients of the two beams com-

posing the cancellation pattern are of opposite sign and have magnitudes more than

five times larger than the corresponding unperturbed pattern values. Indicating that
the two beamzs are doing considerable work in cancelling the effect of each other in"

addition to cancelling the original pattern. This behavior of the cancellation pattern

may be explained qualitatively as follows. The mainlobe of the beam directed at J
the location of the sidelobe peak at 15. 23' is much broader than the sidelobe of the

original pattern and hence tapers off much more gradually than does the unperturbed
sidelobe. Hence, if the beam directed at 15. 23' was exactly matched In magnitude
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to the origl-al pattern there it would have a component considerably larger in mag-
nitude than the value of the unperturbed pattern at 15. 94*. To counter this unwant'.d
"overshoot", as it were, of the beam directed at 15. 23% the beam directed at

15. 94 must be of opposite sign. The component at 15. 23 of the mainlobe of the
beam directed at 15. 940 in turn requires cancellation by the peak of the beam dir-
ected at 15. 23" which forces the magnitude of the latter beam to exceed the magni-
tude of the original pattern at 15. 23%.

A similar but less pronounced behavior of the cancellation pattern occurs for
minimized total weight perturbations (compare Figure 15b with Figure 7b). The
mainlobe of the beam directed at 15. 230 in this case, being less wide than the main-

lobe of the minimized relative weight perturbation beam but still twice as wide as

the sidelobe of the original pattern, has a smaller "overehoot" at 15. 94 requiring
correspondingly less compensation by the beam directed at 15. 94"..- ..

Figures lCa-16c and 17a-17c show the patterns obtained for the case of the same

two null locations at 15. 230 and 15. 94" when only the phases of the weights are
N2

allowed to vary. Figures 16a-16c correspond to minimization of E o2 and
N 

n= 1

Figures l7a-17c to the minimization of ; (an n) 2. The behavior of these patterns
nAI

for 9 > 0 is similar to that of the corresponding combined amplitude and phase

perturbation patterns.
Following this discussion of the basic characteristics of nulling at selected

points, we now discuss a set of computations performed to investigate cancellation
in a given sector of a pattern. We define the power cancellation ratio in the Inter-
valAs 1 -5 0 S a 2

r2
max p11.

C MEAG
max [p (9)]

where p0 (0) is the original pattern and p(G) is the perturbed pattern.
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'Figure 12a. Perturbed Pattern With
Two Nulls Imposed at 15. 950 and

0 - . 17. 36 * With Phase-Only Perturbations.

Minimizing ! 0 .2 = -90° to +90*

THETA (DEGREES)

.20

-40

Figure 12b. Cancellation Pattern to
Impose Two Nulls at 15.95 and 17.36
WithnPhase-Only Perturbations. Minimizing

- 0 -90to,90

THETA (DEGREES)

Figure 12c. Original Pattern and
Perturbed Pattern With Two Nulls

a , Imposed at 15. 95 and 17. 36 With
Phase-Only Perturbations, Minimizing

n2. 0 = to 25*

0 n

THETA (DEGREES) . ......
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3 Figure 13a. Perturbed Pattern With
U Two Nulls Imposed at 15. 95 and

17. 36 With Phase-Only Perturbations, ..
Minimizing a-90 to +902

too- 1 4 1 1 1 1- --

THETA (DEGREES)

g N
.40.

Figure 13b. Cancellation Pattern to
Impose Two Nulls at 15.95" and 17.360
With Phase-Only Perturbations, Minimizing

Va no) = -900 to.+90" if-,

III

S~THETA (DEGREErS)

Figure 13c. Original Pattern and
* . ' Perturbed Pattern With Two Nulls
e1 , " : , Imposed at 15. 95" and 17. 366 With

Si, Phase-Only Perturbations, Minimizing

V -(anon)2  9 =0"to25"

-lTHETA (DEGREES)
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S- Figure 14a. Perturbed Pattern With
Two Nulls Imposed at 15. 23" and
15.94 * With Combined Amplitude and
Phase Perturbatlonp, Minimizing
Relative Weight Perturbations.
8 = -90" to +90"

THETA (DEGREES)

"-40 l

Figure 14b. Cancellation Pattern to "e
Impose Two Nulls at 15. 23 and 15. 94 I -

With Combined Amplitude and Phase
Perturbations. Minimizing Relative Weight .
Perturbations. 9 = -t06 to +90* -

THETA (DECREES)

-40-- Figure 14c. Original Pattern anda , •Perturbed Pattern With Two Nulls

3 ;I •Imposed at 15. 23 and 15. 94" With
II Combined Amplitude and Phase

-"Perturbations, Minimizing RelativeWeight Perturbations. 0 0 0 to 25"

THETA (DECREES)
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oFigure 15a. Perturbed Pattern With
"IIITwo Nulls Imposed at 15.230 and 15. 34I IWith Combined Amplitude and Phase

-. - Perturbations, Minimizing TotalWeight Perturbations. 0 = -90" to +90"

THETA (DEGREES)

.- UU

Figure 15b. Cancellation Pattern to 9.
Impose Two Nulls at 15. 23' and 15. 940

with Combined Amplitude and Phase
Perturbations. Minimizing TotalTh'Y
Weight Perturbations. B=-900 to +90*

THETA (DEGREES)

Fir bFigure 15c. Original Pattern and
Perturbed Pattern With Two Nulls

WihCombined Amplitude and Phase

Perturbations, Minimizing Total
" If ` I I Weight Perturbations. 0 900 to 25

-- M I I t 2

II
THETA• (DEGREES)
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Figure 16a. Perturbed Pattern With
Two Nulls Imposed at 15.23' and
15. 940 With Phase-Only Perturbations.

Minimizing Xn. 9 2 -90" o0+90,

THETA (DEGREES)

Figure 16b. Cancellation Pattern to e

Impose TwoNulls at 15.23" and 15.95"
With Phase-Only Perturbations.

Minimizing ! n2. 8 -90" to +900" -RA.

THETA (DECREES)

t!'

' ' " -> Figure 16c. Original Pattern and
SPerturbed Pattern With Two Nulls

S•Imposed at 15.23* and 15.940 With
a, aPhase-Only Perturbations. Minimizing

2
Zon 0O0"to250

THETA (DECREES)
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Figure 17a. Perturbed Pattern With
Two Nulls Imposed at 15. 23 0and

C'11 15. 94 0With Phase-Only Perturbations.

MinimWidng Z(a non2  0 it -90' to +900

THETA (DEGREES)

- *' - I.

Figure F7b. Cancellation Pattern to
Impose Two Nills at 15. 23 03and 15. 94 0
With Phase-Only Perturbations,

Minimizing Z(a nn) -90-t to +90o 0/

THETA (DEGREES)

FeFigure 17c. Original Pattern and

Pertuiared Pattern With Two Nulls

Imposeied Two 15.ll 23 15 3 and 15.94 94 Wit

Phase-Only Perturbations.

MinimiMingiZ(a 2 Om 0= to 250n n

THETA (DEGREES)
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The procedure used to study the behavior of the cancellation ratio for the four
types of weight perturbationi was as follows. Starting with the 41-element. 40 dB.. .

Chebyshev taper pattern, the left hand boundary of the sector of interest. *1'" wasi .,

fixed at the peak of the fifth aidelobe at9 - 15.23'. A second location @r. was •.

then found auch that the cancellation ratio in the interval (15. 23', 9 2J was 30 dB

when a null was imposed at 15. 23* and 82 using combined amplitude and phase
N

perturbations and requiring n IAwnI 2 to be minimized. This gave 2w 15. 78".

The cancellation ratio for all four types of weight perturbations in the sector

(15. 23'. 15.78"] with nulls placed at 15.230 and 15.78* was then uetermined. Next

the sector was enlarged to the right by adding a length (measured by sin 9) equal

to sin (15.78') - sin (15.23') giving 0 2 = 16.33'. The cancellation ratio in the .

sector [15. 23'. 16. 3301 was then calculated for all four types of perturbations with

nulls constrained to lie at 15. 230. 15. 78*. and 16. 33. The procedure was then /
continued !n the same way by adding equispaced nulls. The cance'lation ratios ob-

tained are shown in Table 2. Table 3 shows the values of beam coefficients and null

depths for these cases. .

Referring to Table 2. we see that the cancellation ratios obtained with the two

types of combined amplitude and phase perturbations decrease steadily as the number

of nufle Increases indicating more effective cancellation. Slightly lower ratios areN N '
obtained by minimizing E j~w 12than by minimizing AwnI a )2. The

n~ n nn-I n= I • " '-•

Improvement' (that is. decrease) of the cancellation ratio with the increase in number

of nulls may be explained by noting that in requiring nulls to be placed at various

locations we are, equivalently, requiring the cancellation pattern to exactly match

the original pattern at these locationx. As the number of points at which the cancella- .. "

tion pattern is matched to the original pattern increases, the better is the overall

fit of the cancellation pattern to the original pattern and hence the cancellation ratio

decreases. Indeed, in the limit of using all the degree& of freedom et our disposal

by imposing nulls at N locations, the cancellation pattern will exactly match the

original pattern everywhere and hence the cancellation ratio will be minus infinity.
N 2

The slightly lower 4ancellation ratios obtained by minimizing E I Awn I 2 as com-
N 2 suil wihwhtw

pared with those obtained by minimizing 2 (IAw~l /a)
n = 1 nI Awn It

have observed above, in our examination of the patterns corresponding to nulling at

one or two selected points. The cancellation beams used when the relative weight

perturbations are mi imized have a much broader mainlobe than those used when

the total weight pertu~bations are minimized, and hence are more likely to result

In higher perturbed pattern sidelobe values in between the null locations.
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The behavior of the cancellation ratios obtained for the two types of phase-only

perturbations is in marked contrast to the behavior of the cancellation ratios for

the two types of combined amplitude and phase perturbations. The cancellation
N 2

ratios obtained by minimizing E 0n increase as the number of null locations in-
n=l1n N 2

creases beyond three, and those obtained by minimizing E (an On)2 increase as

the number of null locations increases beyond two. For six null locations there is

virtually no effective cancellation by either scheme of phase-only perturbations.

In general the cancellation ratios obtained by minimizing the sum of the squares of

the phase perturbations themselves are lower than those obtained by minimizing

the sum of the squares of the weighteJ phase perturbations. The reason for the

much poorer cancellation obtained with the phise-only perturbr-F schemes as

compared with the combined amplitude and phase perturbatiou schemes is the small

angle approximation used to linearize the phase-only nulling problem. As the number --
of imposed nulls increases and coupling between the component beams of the phase-

only cancellation patterns increases, the beam coefficients become larger and larger

in magnitude (see Table 3) and consequently the phase perturbations increase in

magnitude. For example, for two nulls at 15. 23 and 15. 78 , the largest phase
N 2 N 2

perturbations obtained by minimizirn n" *n and _ (an n) are 1. 55 and 5.47"
n= I n=1

respectively. In contrast, for six nulls the largest phase perturbation is 42.70 and
N 2

18 phase perturbations are greater than 10" for minimizing E n while for mi-
N 2 n=1

mizing r (an n) the largest phase perturbation is 656 and 10 phase perturba-
n= 1

tions are greater than 10". The larger the phase perturbations, the worse the small

angle approximation. Hence the null depth achieved degrades (see Table 3) and

consequently the overall sector cancellation is less effective. The fact that the

small angle approximation becomes less valid as the phase perturbations grow, also

explains why somewhat better cancellation ratios are obtained by minimizing
N 2 t b N
n than by minim/zl (an n. The phase perturbations obtained with the

n 0i 'ng n
former scheme are, in a mean squares sense, lower than those obtained with the

latter scheme and so satisfy the small angle approximation better.

4. GENUAZATIONS

In Section 2 we saw that the process of determining weight perturbations to

place nulls at a set of specified locations led to a representation of the cancellation

pattern in terms of beams. Minimization of the sum of the squares of the weight

perturbations relative to the origina! weights led to a representation of the
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cancellation pattern in terms of beams corresponding to an element amplitude taper

equal to the square of the original taper, while minimization of the sum of the

squares of the total weight perturbations led to a representation in terms of beams

corresponding to a uniform amplitude taper. We also saw that the latter minimiza-

tion problem is equivalent to minimizing the mean square difference of the can-

cellation pattern over a full period of the variable u = kd sin (0). It is natural to
inquire whether there is a minimization of some property of the cancellation pattern

that corresponds to the minimization of the sum of the squares of the relativeweight

perturbations. The object of this section is to answer this question and in so doing

to generalize some of the results obtained in Section 2. --..

We begin by returning to the problem addressed in Section 2 of determining

combined amplitude and phase perturbations to place nulls at specified locations in

a given pattern. Noting the general relation between the weights. wn. of the

elements of an equispaced linear array and the pattern. p(u) of the array

N 1

where 1,l n Iu du . (27

and
plu) = w n e n

n=l I

dn N - I (n - 1)

/

and . .,:, : •/

u= kdsin .

it follows that the sum of the squares of the total perturbations Awa equals the mean

of the squared cancellation pattern. Ap(u) p(u) - p 0 (u); that Is..-

N w

law [&wnl =+ I Ip(u)- po(u)I2 du. (28)

Hence minimizing the sum of the squares ol the total weight perturbations is equiva-

lent to minimizing the mean squared cancellation patt-rn.

We now ask whether there is a similar pattern minimization that corresponds

to the minimization of the sum of the squares of the weight perturbations relative

to the original weights:

54
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n=, .I .n s n= n

In fact the-e is, and the answer is given in terms of minimizing the mean square

of the convol..tion of the cancellation pattern with another pattern. For in general.

if
N

P 1( u ) i n e 
• 

ni d u

n= 1

and
Sj d n - u

n=

then it is easy to verify by direct substitution that the convolution of p1 and P2

defined by
if/IT

P I * P2 1 (u) = WI f p1 (u) P2 (u 21)ru . f p(u u u)P 2 (u )du

has the representation
N -id u

[P 1*P 2 1(u) = F W in e- 2 
edn

n= I

Hence, from Eq. (27),
2t N

1iJ t'l~~~~ du n I ~Wi w 2  (29)
-IT

where

thnIt folos es ovr by lettict wsubswn titut2n=ioan that tecnouino ladP }

N - j2
[(u) l )= = ne n

n=1

a 21 5
g•" EP a e2] nu u=. 2)

n=n n
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Thus the minimization of the sum of the squares of the relative weight perturbation

is equivalent to the minimization of the mean square of the convolution of the can-

cellation pattern with the pattern corresponding to element weights equal to the

reciprocals of the amplitudes of the original weights.

Note that we can also recast the equivalence of minimizing the 3um of the

squares of the total weight perturbations with minimizing the mean squared can-

cellation pattern (Eq. (38)] by letting wIn ' Awn and w 2 n = 1 in Eq. (29) thereby

obtaining

N

n la n , T[(p-p )fg](u) 2 du (30)

-IT

where

g(u) = , ej d = 1n (31)
n=l sin (•)

Hence, minimizing the sum of the squares of the total weight perturbations is

equivalent to minimizing the mean square of the convolution of the cancellation 1

pattern with sin ( /sin ( U- ). The result, Eq. (30), can also be obtained di-

rectlyfromEq. (28) by noting [as is easily verified using Eq. (31)] that the convolution

of an equispaced linear array pattern with the function sin /sin( u) is the

array pattern itself so that
Isin u ... .

p : ( (u) = p(u) - Po((u)PP°"sin( )/

We can now go further and observe that the two sums of squares of weight perturba-

tions,
N N 2 Awl

n= l n/

whose minimization in conjunction with placing nulls at a set of specified locations

led to the two forms of cancelling beams treated in this report, are special cases

of a more general weighted sum of squares

S(---'- I f . 1(p-po) g)(u) 2 du (32)

-r5
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where

g(u) F, -jdue

nul n

At in then reasonabl, to ask whether. given any set of non-zero real coefficients

cwe can find the stof perturbations Aw~ that will result in the nulls at a set of

prescribed locations ur'U_ km 1. 2, ... M, and that will minimize

or. equivalently, minimize

~,f jf(P-po)*gJ(u)l du

The condition for nulls in the perturbed pattern at u= mik k= 1, 2... 11. Is

0 -P(uk) =Po(uk) + &P(uk)

+ 2 Aw en k
PN n= I n

or

n-1

so that we wish to find the set of weight perturbations Awý. satisfying Eqs. (33) and

minimizing
N

The problem can be expre -ed in the form of finding the vector of weight perturba-'7

A.. [Al w2'..AN
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satisfying

and minimizing

(&w)t C Aw

where A 1. the M X N matrix

1 u 1  2u 1  0 Nul

S . /6 . .

A m

-jdl UM ejd 2 uM .. ejdN UM

C is the N X N diagonal matrix

c 2

-2
CC

-2

C-N

0 CN

and

Y. [P (p~ul). Po(u 2 )' Po. p(uM)]T (34)

10
Using a result from the theory of generalized inverses. the solution is given by '

Aw a C, At (ACl1 tl

so that Aw is a t inear combination of the columns of C At with coefficients fro

the vecotor

b (ACl At)
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But

c2 ed lI c 2 ed U2  " 2ce dIuM

2 jd2 u1  2 jd2 U2  2 Id2 u,Ce ce ... C2 e

C At

e2 JNUi 2 JeN u2 2 jd NUM
Nt . cN *.e C. C

so that

Awn cn2 bM e dn um
mn 1ma

and the perturbed pattern

p(u) po(u) + A p(u)

where
M N A -

Ap(u) =bm n= 2 " ,n

m-i n-in

If the original pattern po(u) is real as we assumed in Section 2. ther the cancellation
pattern must likewise be real.. This in assured by assuming even symmetry of the
weighting coefficients ca with respect to the phase reference center; that is.

en, 0N~n+i, n, 1,2.. .... N.

Then the cancellation pattern is repreaented as the sum of M real beams, one pointed
at each of the null locations, corresponding to an amplitude taper equal to the square
of the weighting coefficients c . The two types of beams treated in Section 2 are

special cases of this result. Minimum relative weight perturbations are obtained.a ~ wbc gvs 2  and a representation of
as noted above, by letting c. = and a rises ofn n U
the cancellation pattern in terms of beams corresponding to an amplitude taper equal
to the square of the original taper. Minimum total weight perturbations are obtained

2by letting c n I so that cn I and the cancellation pattern is represented as the
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sum of beams corresponding to a uniform amplitude distribution (that is.

sin ( la/sin( u ) beams). We could equally well consider other types of beams.

For example, by letting cn = *Van we obtain cn = an so that the cancellation
beams are replicas of the original pattern itself.

/ decision regarding which type of beams to use for nulling in a particular

situption must take into account the characteristics of the cancelling beams and

how they affect the perturbations of the original pattern at points other than the

imposed null locations. We saw in Section 3 that the deviations of the perturbed

pattern from the original pattern at points other than the null locations depend

strongly on the width of the mainlobe and the taper of the sidelobes of the cancelling

beams. Because of the inverse relationship between width of mainlobe and taper of

sidelobes, there is a tradeoff between relatively small perturbations spread out for

a relatively large distance from the null locations (as with the sin ( ) /sln ( u)

beams), and relatively large perturbatio.as restricted to a relatively small vicinity

of the null locations (as with the beams corresponding to' a taper proportional to the

square of an already highly tapered element amplitude distribution). It is possible

that the relationship established in this section between the type of cancelling beams

and the minimization of the convolution of the cancellation pattern with a pattern

uniquely associated with the type of cancelling beams, can be used to help clarify

and quantify this tradeoff between weak. distributed perturbations and strong, localized

perturbations, but more work remains to be done here.'

Although we have so far in this section restricted our attention to combined

amplitude and phase perturbations, the results established here can be extended in

a parallel way to phase-only nulling as well. Equation (32) can be used as the start-

ing point for an analysis of phase-only nulling, with the form of the weight perturba-

tions given by

Awn 0 w - won

j ,n
-W e -J W

on on

=Wo (e in )

onh

where is the phase perturbation of the nth weight. For small perturbations,

AWn uiWonon
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so that the genera'lized linearized phase-only nulling problem is to determine the

set of 0n that satisfy the equation system (similar to Eq. (33))N
~jdu
"e nUk (J won ) - po(uk). k= 1, ..... M (35)

n= I

and minimizeN
Splitting Eq. (35) into its real and imaginary parts we obtain

n Vn n (d k (36a)
n IPo k= 1.2 ... M \

an n n no k -( uk n) 0 (3 1(3b)nn

where we have let won =an ejn The phase-only nulling problem can then be

expressed in the form of finding the vector of phase perturbations

TV 0 91 2' O.. N]T

satisfying

and minimizing

T
C

where A is the A!X N matrix[ a1 sin (d Iu 1-,k) a2 sin (d 2 ul * 2) * usin(dNul .*N)

811Au

a ..... .... d. I '** I II II a 2 s "* .



C to the N X N diagonal matrix

(ailic1 )20

C u (a2 1c 2) 2

0ma NIoN)A

and y is given as before by Eq. (34). Then

"C AT (ACT AT) "

so that ini linear combination of the columns of C- I AT wlth coefficients from

the vector

b (AC'A) T .

Since

2 -2 2a-1 2a-

C'IAT =.

2-si(d u 2 - 2IN..2 -1

it follows that

M
- cab WA bmi1dum~~ (s3r)oi n Az inn .

If the original phases, * n. are odd symmetric with respect to the phase reference
center, then even symmetry of the weighting coefficients. c., assures that the
are odd symmetric and hence that Eq. (36b) is automatically satisfied. The two
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special cases treated in Section 2. the minimization of -• and - (an2n)o.
correspond to the choice of cn an and cn a 1 respectively, for which Eq. (37)

yields Eq. (19) and Eq. (23).

The canzellation pattern corresponding to Eq. (37) is

N -jdnu

Ap(u) E Awe n
n=1I n

W (e in I)e _jd
n= I

N jdnU
" ( on e d e

At N c2  -du-) i (U )-

3 b eon -1)

b c Wo n e-' "n (u u n ej' u .2,M

nml n'

M= I m rA

For *n dn us' this gives the approximate representation of the phase-only cancella-

tion pattern as the superposition of M pairs of beams, one member of the pair

directed at a null location, and the other member, of opposite sign, directed at a

location symmetric with respect to the mainlobe of the original pattern.

3. CONCLUSIONS

In this report, we have considered the problem of imposing nulls in the pattern

of a linear array of equispaced, isotropic radiators subject to the condition that the
perturbations of the element weights be minimized. In Sec-tion 2 we analyzed four- "

forms of the problem: (la) nulls imposed with combined amplitude and phase per-

turbations. minimizing the sum of the squares of the perturbations relative to the

original weights; (lb) nulls imposed with combined amplitude and phase perturbations,

minimizing the sum of the squares of the total weight perturbations; (2a) nulls im-

posed with phase perturbati..ns only, minimizing the sum of the squares of the per-

turbations relative to the original weights; and (2b) nulls imposed with phase

perturbations only, minimizing the sum of the squares of the total weight perturba..

tinns. The results are summarized in Table 4. Forms (la) and (ib) can be solved

exactly for the required weight perturbations. Form (1a) leads to a representation

of the cancellation pattern as a superposition of beams, one directed at each im-

posed null location, each beam corresponding to an element taper proportional to

the square of the original .aper; while form (lb) leads to a representation of the

cancellation pattern as a superposition of beams of the sin ( /) sin( U ) type.
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Forms (2a) and (2b) cannot be solved exactly, but approximate solutions cali be /
obtained by assuming that the required phase perturbations are small. Minimiza-

tion of the relative weight perturbations is then approximated by the minimizatiou

of the sum of the squares of the phase perturbations, while minimizing the tot-al

weight perturbations is approximated by minimizing the sum of the squares of the

products of the phase perturbations with the amplitudes of the weights. The result-

ing cancellation patterns can then be approximately represented as the sum of pairs

of beams, one pair for each null location. One member of the pair of beams is

directed at the null location, while the other, of opposite sign, is directed at the

location symmetric with respect to the direction of the mainlobe axis of the original

pattern. The form of beams is the same as that for the respective combined ampli-

tude and phase perturbation problem; that is. beams corresponding to a taper equal

to the square of the original amplitude taper for (2a) and sin ( ) /sin(yu ) beams

for (2b).

In Section 3 we presented and discussed numerical calculations performed to

display the principal features of the solutions obtained in Section 2. The original

pattern was taken to be that of a 41 element array with half wavelength spacing and

a 40 dB Chebyshev taper. We examined the patterns obtained with the four methods

of Section 2 for the cases of one imposed null at the peak of a sidelobe, two nulls

imposed symmetrically at the -3 dB points of a sidelobe, two nulls imposed

symmetrically on either side of a null of the original pattern, and two nulls imposed

asymmetrically, one at the peak of a sidelobe and the other at a -3 dB point of the

sidelobe. We saw that in general the "tapered" beams corresponding to forms (la)

and (2a) resulted in larger perturbations of the original pattern in the vicinity of the

imposed null locations and smaller perturbations far away from the imposed nulls

than did the "sinc" beams corresponding to forms (lb) and (2b). This was a conse-

quence of the fact that the "tapered" beams had wider mainlobes and lower side-

lobes than did the "sinc" beams. Nulling in the phase-only patterns was accom-

panied by an approximately equal and opposite distortion of the original pattern at

the points symmetric to the iuiposed null locations with respect to the axis of the

original pattern mainlobe. As a result, both amplitudeand phase weighting are

required to produce nulls that are symmetric with respect to the direction of the

mainlobe.

In Section 3 we also discussed the results of calculations performed to examine

cancellation within a sector of the pattern as the width of the sector was increased

by adding equispaced imposed nulls. We saw that the cancellation achieved by the

two combined-amplitude-and-phase perturbation methods became increasingly

effective as the width of the sector was increased, but that the depth of nulls and

cancellation achieved by the two phase-only methods deteriorated severely as the
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width of the sector was increased. This deterioration of the performance of the

phase-only methods was attribteted to the fact that as imposed nulls were added.

interference between the cancelling beams became more pronotuiced. the required

phase perturbations were larger, and consequently the small angle approxima ion

used to derive the phase-only solutions became more and more inaccuratp

In Section 4 we considered the problem of finding a pattern minimization that

was equivalent to minimizing the relative weight perturbations, in the same way

that minimizing the mean square cancellation pattern was equivalent to minimizing

the total weight perturbations. We found that there was an equivalent pattern

minimization. namely, minimizing the mean square of the convolution of the can-

cellation pattern with the pattern corresponding to element weights equal to the

reciprocals of the original amplitudes. We then showed that the types of minimiza-

tion considered in Section 2 w:,-e special cases of a more general minimization of

the sum of squares of the weigk.' perturbations divided by arbitrary non-zero real

coefficients-a minimization whit h had its eqLivalent counterpart in pattern space

in terms of minimizing the mean square of the convolution of the cancellation

pattern with the pattern corresponding to element weights equal to the dividing

coefficients. We then cntved this generalized minimization problem for combined

amplitude and phase perturbations, and for phase-only perturbations.

I
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Nulling With Minimum Pnttam Pwturbatins
/

In this appendix we solve the following problem:

Given a linear a-ray of N equispaced isotropic radiators and an initial set of com-

plex element weights, Won' n= 1. 2 .... N. determine the set of complex weights

wn, n= 1, 2. ... , N. which gives the array pattern with nulls at a set of M pres-

cribed pattern locations, Uk0 k= 1, 2..., M, M < N, and which differs as little as

possible in the mean sense from the initial pattern. When we use the word "mean"

here we define the interval over which the mean is taken to be the visible region
- 59 5 ' so that the variable u = kd sin 0 is to be integrated from Akd to +kd.

The initial pattern p 0 (u) is given in Section 2, as

N -jdun u
POWU) E Won e ... . ... .... ..

n= 1

and the perturbed pattern p(u) by
N - Jdn • ,ppu) e p wn e b

n= 1 ,

The difference between the patterns is then

N - jd uplu) - P (U) = E (w " Wo e eJ nU . •

0 (wi wone n
n=l
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and the mean square difference between the pattern a is
kd N N I

P(u)-- P(u) I dum w nn) (w.n - won)
-- !

kd a -d I
d "J (d - dm)u du

-kd

N N
( w;-W o (w won)sinc((d d)- kdj

=a n-i I M am n n

(Aw)t C (Aw)

where

Aw - (w, - wol* w2 - w02 ..2 . w. woN. .

- (4wI. 4w2 ..... AwN]T T

and

[C] - 5Lfc((d. dm) kd)u [C]r

Note that for half wavelength spacing. kd = x and C becomes the identity matrix so
that

kd
Sf Ip(u) -po(u) 2 

- (Aw)t (Aw)
-kd

N

" "- wn 12. (Al)
n= I

The perturbed pattern is required to have nulls at the M locations u = Uk,

k- 1.2. .... M. so that

0 wneijdnuk

n= 1
= N (w + -w1  jd uk

n= I
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or

N e _j = - Po(u k 1, 2 Al
n=l

In matrix form. the equation system for the AlI nulls is

A Aw = (A2)

where

"-jd uI -jd 2 u1  "jdN u I
e e ... e

-jd 1 -jd 2 u2  e -j dN u 2eJd 12 e ... e

A=

jdI u -jd2 uM -jdN u

e e ... e

and

= -[Po(u). poU 2 ) . Po(um)]

The problem then is to find the solution to Eq. (A2) which minimizes (Aw) C (Aw).

Now the quadratic form (Aw) C (Aw) is positive definite since it represents the
10

integral of a real power density. Hence, from the theory of generalized inverses

the desired solution is

A w CI At (A C-fA)" Y. (A3)

Equation (A3) gives the change in element weights for any spacing of the elements.

For the special case of half-wavelenrth spacing we have already noted that the

matrix C reduces to the identity matrix. Then

Aw = At (AAt"1

Hence Aw is a linear combination of the columns of A with coefficients from the

vector b (AAt)l y. But the columns of A are the M vectors
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x I

jdI uk jd 2 uk jdNUk T
(e * e ...e e I k= 1,2, ... M-

so that

M d/

Awn a bk e dnuk

This expression for the weight perturbations is identical to Eq. (10) obtained by

requiring •IAwnI 2 to be a minimum. Of course this conclusion is also an

immediate consequence of Eq. (Al). but it is of interest to obtain it by solving the

minimum pattern perturbation problem with arbitrary uniform element spacing.

In the case of phase-only element control, half wavelength spacing, and amall

phase perturbations, starting with Eq. (A 1) we have

kd N

p(u) Po(U)12du= IAWn1 2

n= 1

dN
- ý Is a ne - 1l1

n= 1 n

N
E (a 0)2

n=I a n

2\

so that minimizing F (a 2 is equivalent to minimizing the mean square pattern

perturbation.

In the above, as mentioned earlier, we have defined the mean with respect to

the visible region of the array pattern. Since the array pattern for an equispaced
linear array is periodic with period 2 v in the variable u = kd sin 9 . it to also

possible to define the mean with respect to one period of the variable u regardless

of whether or not the visible region constitutes one complete period. If this is done,

then the mean square difference between the original and perturbed pattern is

1" N -N -r
I lp() Po(u)I2 du = I Z * ) (w w°M) du

N, M l (w* -Wor(n -wn I d

N N

*. Wo- (. w 2 (in[(n -
m= I n= I o-m on' ( -M)

N
- E IAwnI 2

n-W 1
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so that the sum of the squares of the weight perturbations equals the rneý n square

of the cancellation pattern, the mean being taken with respect to a full pc riod of the

variable u = kd sin 0 . Thus a least mean square match to an initial elen+unt ex-

citation is equivalent to a least mean square match over one period of the initial

pattern. In the special case of half wavelength spacing. d = X/2. the period

- S • kd sin 0 < ir coincides with the visible region and Eq. (A4) becomes identical

with Z.q. (Al). When d > X/2, then a match over a full period of the variable u im-

plies a match over an angular sector smaller than the visible region. This how-

ever, is not too serious since the pattern is periodic outside this sector.
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